Convergence analysis of sectional methods for solving breakage population balance equations-I: the fixed pivot technique

نویسندگان

  • Jitendra Kumar
  • Gerald Warnecke
چکیده

In this work we study the convergence of the fixed pivot techniques (Kumar and Ramkrishna, 1996, Chem. Eng. Sci., 51, 1311-1332) for breakage problems. In particular, the convergence is investigated on four different types of uniform and non-uniform meshes. It is shown that the fixed pivot technique is second order convergent on a uniform and non-uniform smooth meshes. Furthermore, it gives first order convergence on a locally uniform mesh. Finally the analysis shows that the method does not converge on a non-uniform random mesh. The mathematical results of convergence analysis are also validated numerically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence analysis of sectional methods for solving breakage population balance equations-II: the cell average technique

This work presents the convergence of the cell average technique (J. Kumar et al., 2007, Powder Technology 179, 205-228) for solving breakage population balance equation. Similarly to our paper Kumar and Warnecke [5] of this series, we study convergence on four different types of meshes. A second order convergence is proved for uniform, locally uniform and non-uniform smooth meshes. Finally the...

متن کامل

Convergence analysis of sectional methods for solving aggregation population balance equations: The cell average technique

The paper deals with the convergence analysis of the cell average technique given by J. Kumar et al. [3] to solve the nonlinear aggregation population balance equations. Similarly to our previous paper Giri et al. [1], which considered the fixed pivot technique, the main emphasis here is to check the convergence for five different types of uniform and non-uniform meshes. First, we observed that...

متن کامل

Convergence analysis of sectional methods for solving aggregation population balance equations: The fixed pivot technique

In this paper, we introduce the convergence analysis of the fixed pivot technique given by S. Kumar and Ramkrishna [22] for the nonlinear aggregation population balance equations which are of substantial interest in many areas of science: colloid chemistry, aerosol physics, astrophysics, polymer science, oil recovery dynamics, and mathematical biology. In particular, we investigate the converge...

متن کامل

Solving systems of nonlinear equations using decomposition technique

A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...

متن کامل

Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations

This paper presents stability and convergence analysis of a finite volume scheme (FVS) for solving aggregation, breakage and the combined processes by showing Lipschitz continuity of the numerical fluxes. It is shown that the FVS is second order convergent independently of the meshes for pure breakage problem while for pure aggregation and coupled equations, it shows second order convergent on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 111  شماره 

صفحات  -

تاریخ انتشار 2008